The AnandTech Podcast, Episode 41: Let’s Talk Server, with Patrick Kennedy

See the original posting on Anandtech

While in San Francisco for AMD’s Ryzen Tech Day, I had a chance to catch up with a good friend by the name of Patrick Kennedy, who runs the tech news website ServeTheHome. We frequently battle STH here at AnandTech to be the first to break news on new server platforms, but it is a friendly rivalry where often we end up picking each other’s brains for information or to bounce ideas off of each other. To that end, I managed to convince Patrick to be a guest on our podcast, to talk about the recent issue with Avoton and Rangeley C2000 CPUs as well as the launch of C3000 and discuss what the upcoming Naples platform can do for AMD.

Apologies in advance for parts of the recording. We did this in a high-rise hotel during a freak San Francisco storm, causing wind to whistle through the vents in the room and no way to close the vents. I tried to clean up the audio as best as I could, alas I am no expert. Experts, please apply to be our podcast editors, and tell us what equipment we should be using.


Patrick Kennedy (ServeTheHome), Ian Cutress (AnandTech) and David Kanter (Microprocessor Report)
Photo Taken by Raja Koduri (AMD). David was declared the winner of the ‘Bring Your Suit A-Game’ contest.

The AnandTech Podcast #41: Let’s Talk Server

Featuring

iTunes
RSS – mp3m4a
Direct Links – mp3m4a

Total Time:  28 minutes 39 seconds

Outline mm:ss

00:00 – Introduction
00:15 – Patrick’s 2000 cores
01:41 – Atom C2000 Avoton/Rangeley Hardware Bug
09:22 – Denverton and C3000
15:17 – Xeon D-1500 Networking CPUs
18:02 – Opportunities for AMD Naples
28:39 – FIN

Related Reading

The Intel Atom C2000 Series Bug (via ServeTheHome)
Intel launches Denverton C3000 Series
AMD Naples Motherboard Analysis

The OpenPOWER Saga Continues: Can You Get POWER Inside 1U?

See the original posting on Anandtech

When we saw that Tyan made a 1U server based upon this Habanero platform, that caught our eye. The power-hungry POWER8 inside a density optimized form factor? And they feed it with a PSU of "only" 750 W? Is that really a viable option?

Today we’ll be taking a loot at Tyan’s GT75 system to find out the answer to that, and to see if a 1U configuration makes sense for a POWER8 system.

Performance & Battery Life Report: Xiaomi Redmi Note 4 with MediaTek Helio X20

See the original posting on Anandtech

As a member of Xiaomi’s more affordable Redmi series, the Note 4 does not have a curved screen, a ceramic body, or the latest flagship hardware like Xiaomi’s more expensive models, but it does pack a 5.5-inch IPS LCD display, a rear-mounted fingerprint sensor, and a 13MP camera with PDAF into a solid-feeling aluminum chassis. This report is more concerned with its internal hardware, however, focusing on the Redmi Note 4’s system performance, gaming performance, and battery life.

AMD Launches Ryzen: 52% More IPC, Eight Cores for Under $330, Pre-order Today, On Sale March 2nd

See the original posting on Anandtech

The biggest x86 launch for AMD in five years is today: Ryzen is here. As always before a major launch, AMD gives a ‘Tech Day’ for relevant press and analysts, and through this event AMD’s CEO, Dr. Lisa Su lifted the lid on one of the most anticipated products in the semiconductor industry. AMD knows how to control the level of enthusiasm for its fans, and today is the end result, with processors going on pre-order from major retailers today at 1pm EST, ready for a general hard launch on March 2nd.

In a similar vein to launches of recent smartphones, AMD is doing a staggered announcement/launch with the products on their new microarchitecture. Where Samsung/Apple might give all the details for a product a few weeks before it’s available to buy, today on February 22nd marks the day where AMD is giving consumers information about Ryzen, and specifically the Ryzen 7 family of eight-core products. All the information today is from AMD, and AMD’s internal testing, and pre-orders also start from today for users ready to put down their money for a launch day part. Reviews of the CPUs, as well as when the CPUs will ship to customers, is on March 2nd. This also happens to be right in the middle of two annual shows, Game Developer Conference (GDC) and Mobile World Congress (MWC), making the time between receiving pre-launch samples and being able to provide independent verification of AMD’s performance claims relatively frantic. We’ll do our best!

The Ryzen Family

With a new processor launch, naming the parts and positioning them within the market is critical. So with Ryzen, the processor stack will be split into three based on performance and price: Ryzen 7 at the high end, Ryzen 5 in the middle, and Ryzen 3 for more price-conscious consumers. Both Ryzen 5 and Ryzen 3 are set to be launched later, and Ryzen 7 is the first portion of the family to be released.

Ryzen 7 will have three CPUs to start, all having eight cores and supporting simultaneous multi-threading:

  • Ryzen 7 1800X: 8C/16T, 3.6 GHz base, 4.0 GHz turbo, 95W, $499
  • Ryzen 7 1700X: 8C/16T, 3.4 GHz base, 3.8 GHz turbo, 95W, $399
  • Ryzen 7 1700: 8C/16T, 3.0 GHz base, 3.7 GHz turbo, $329

Ryzen 7 1800X will be the high-end part, featuring a base clock of 3.6 GHz and a turbo of 4.0 GHz, within a TDP of 95W, and for $499. Next to this is Ryzen 7 1700X, launching at $399, with a base/turbo of 3.4/3.8 GHz. The final part for the launch is the Ryzen 7 1700, providing eight cores and sixteen threads for $329 at 3.0/3.7 GHz frequencies.

Processors will initially be available for pre-order from 185 retailers and OEMs worldwide, either as individual parts or pre-built systems.

What, not 40% IPC? 52% IPC??

Enthusiasts and analysts use the term IPC, or ‘Instructions Per Clock’, as a measure of how much the underlying microarchitecture improves from generation to generation. Two decades ago, a good design on a smaller node could net a healthy double-digit gain, whereas in recent years 5-10% gain has become the norm. When AMD initially announced that the new Zen microarchitecture they were developing was aiming for a 40% IPC gain, despite the low IPC they were starting from, users remained skeptical. AMD rehired Jim Keller to work alongside long-term AMD architect Mike Clark and produce a team with several goals in mind: high-performance x86, simultaneous multithreading, and a product to be relevant in the computing, PC, server and mobile space again. So despite this, 40% IPC always seemed a somewhat lofty goal, because Bulldozer was so underwhelming, and despite this low starting point. For the Ryzen launch today, AMD is stating that the final result of that goal is a 52% gain in IPC.

This is something we will need to test in due course!

The Ryzen Silicon, and the Future

AMD pointed out that the new 8-core silicon design runs 4.8 billion transistors and features 200m of wiring. Through previous announcements we’ve examined parts of the microarchitecture including cache sizes, threading, front-end/back-end design, and so on.

AMD Zen Microarchiture Part 2: Extracting Instruction-Level Parallelism
AMD Gives More Zen Details: Ryzen, 3.4 GHz+, NVMe, Neural Net Prediction, & 25 MHz Boost Steps

AMD’s CEO was keen to point out that this is a from-scratch design for AMD, using the knowledge gained from features developed for previous products but ultimately under the hood it looks like ‘a typical x86 high-performance core’, with AMD-specific features and tweaks. We were told that AMD’s roadmap extends into the multi-year range, so while the focus for 2017 will be on this family of products, back at HQ the next two generations are in various stages of development.

BENCHMARKS PLEASE

So despite the 82+ motherboards going to be available, 19 initial PC system builders moving into 200+ through the first half of 2017, the big question on everyone’s lips is how exactly does it perform?

Well, AMD gave us the following numbers:

AMD’s benchmarks showed that the top Ryzen 7 1800X, compared to the 8-core Intel Core i7-6900K, both at out-of-the-box frequencies, gives an identical score on the single threaded test and a +9% in the multi-threaded test. AMD put this down to the way their multi-threading works over the Intel design. Also, the fact that the 1800X is half of the price of the i7-6900K.

In a similar vein, again with the Cinebench 15 multi-threaded test, the Ryzen 7 1700X scores over and above the Core i7-6800K (its price competition) and higher than the Core i7-6900K which costs 2.5 times as much.

We’ll tell you what our benchmarks say, with official retail processors. But you will have to wait until March 2nd. Sorry.